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FOREWORD

CONTENTS

This volume of the report on the AI Test Officer Support Tool
investigation covers the application of neural computing techniques. This
aspect of AI was examined to determine whether this emerging technology could
contribute to future efforts of the investigation. Although this portion of
the investigation represented less than 5 percent of overall efforts, both the
nature of this work and the potential significance of the findings made it
more appropriate to present the results in a separate volume, rather than in
an appendix to the report. Consequently, this volume was patterned after
TECOM Reg 70-12 format, with the notable exception that a separate methodology
investigation proposal (usually appendix A) does not exist for this effort.
The summary portion also pertains only to the examination of neural computing.
Distribution will be in conjunction with volume I.
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SECTION 1. SUMMARY

1.1 BACKGROUND

A revival of interest in neural computing technology has developed over
the last five years. The technology was originally developed over 40 years
ago in an attempt to describe the functions of the human nervous system.
After critical analysis revealed that the early models contained certain
fundamental flaws, researchers in artifical intelligence (AI) largely
abandoned this technical approach towards the end of The 1960s. Throughout
the 1970s and early 1980s, researchers in the fields of neurology, psychology,
mathematics, and physics continued to explore various aspects of models
inspired by neurology and psychology. This research has led to several new
and more complex models and has found solutions to some of the problems
encountered with the earlier simpler models.

Since the start of the 1980s, research on neural computing has gathered
new momentum. New models, combining several disciplines, have been proposed.
The efficiency of these models for practical problem-solving activities, such
as pattern recognition, has been demonstrated through software simulation.
Recent technological progress in electronics and optics has made it possible
to anticipate the appearance of economically viable hardware implementations.
Over two hundred research organizations and industrial companies are currently
active in this field. Several companies are producing software and hardware
neural computing products for commercial application and for use by
researchers and engineers to develop applications of the technology.

-' Projected Command, Control, Communicationand Intelliqence (C3I) systems
will include neural computer-based functions. &eereI -These projected
C31 systems will employ more traditional AI-based software and conventional
embedded computer resources (ECR), as well as neural computer-based functions.
These systems, with requirements to assure the security and survivability of
intelligible, accurate, and properly identified data in the hostile
environment of military operations, will be designed with distributed
architectures and complex transmission protocols 9

Testing these systems, with complex conventional ECRs, will stress the
available test tools and challenge developers and users alike to supply tool
capabilities which will keep pace with the test demands. As the projected C31
systems with neural computer-based functions are implemented, the burden on
the system tester will increase. This will require additional tools capable
of testing neural computer-based hardware and software. Neural computing
technology has the potential to supplement conventional methods and to help
the tester and tools developer meet these testing demands.-

1.2 OBJECTIVE K.2

The objective of this investigation was to explore the,architecture,
concepts, and issues that must be addressed in applying neural computing to a
particular problem., Specific goals were:

a. Define the building blocks of neural computing.

b. Present some of the basic neural computer architectures.
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c. Define the issue of data preprocessing and representation.

d. Determine in general what neural computing can do today.

e. Explore application neural computers as adaptive expert systems for
USAEPG.

f. Identify issues associated with testing of neural computer systems.

1.3 SUMMARY OF PROCEDURES

The initial approach was to investigate the field of neural computing for
applicable methodologies and to relate them to particular areas of software
and systems testing. This approach is particularly appropriate in dealing
with the application of the developing discipline of neural computing.

1.4 SUMMARY OF RESULTS

Neural computer architectures are good at solving several kinds of tasks.
Areas which have been identified that have varying degrees of practical impact
today are modeling and forecasting, signal processing and pattern recognition,
and pattern-classification expert systems.

a. In many problems, such as diagnostic systems or software
maintainability assessment, the correlations between input variables may not
be well understood. Neural computing provides methods of discovering the
relationships between the input variables and how to use them in making a
correct classification of the data.

b. A good problem for solution by neural computing has the
characteristic of overlapping classifications such that one of two or more
categories are probabilistic. Neural computer architectures are able to
deduce these probabilities from training examples or historical data. This
characteristic can be useful for knowledge acquisition from the examination of
the results of an expert's activity in a specific domain. Some of the test
planner AI system prototypes outlined in reference 2 could be developed using
a neural computing solution. These prototypes include system subtest
selection and global test resource estimating, where the total test time and
the number of test items depend on the results of the subtest selection
process.

c. One of the most attractive problems for solution by neural computers
is an area in which the category boundaries of the domain knowledge change
with time. The adaptability of neural computer architectures allows them to
change the decision classification gradually as the conditions for making a
particular classification change. The ability of an expert system to solve
problems, justify recommendations, and document complex processes has made it
a valuable tool. However, there are limitations to the traditional rule-based
expert system, including:

(1) The labor-intensive nature of knowledge acquisition.

(2) The system's inability to learn or dynamically improve
behavior.
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(3) Unpredictable behavior when operating outside the specific
design of the knowledge base.

d. Neural computing provides potential solutions to these problems. The

capabilities include:

(1) Training from examples of expert actions.

(2) The ability to adjust dynamically to changes in the
environment.

(3) The ability to generalize from specific examples.

(4) Tolerance to noisy or random inputs.

(5) Graceful degradation in problems outside the specific range of
experience.

(6) The ability to discover complex relationships among input

variables.

1.5 ANALYSIS

The representation of the input data and the preprocessing of the data, either
by conventional methods or by the neural computer architecture, is a key
element in the development of a neural computer application. In building an
application, the problem must be broken down iaito basic steps. These steps
are very similar to the analytic process used in the development of a
conventional digital computing application. They are as follows:

a. Selecting the recognition problem and collecting sample data.

b. Developing feature extraction and encoding methods.

c. Designing a system architecture.

d. Training and testing with sample data.

e. Evaluating results.

f. Revising the feature extraction method and architecture to improve
the results.

g. Merging the recognition package with a user interface to complete
the application.

With the prope- selection of the neural computer system architecture,
some of the steps can be performed through "auto-association" and
"self-organization" of the dynamics of the neural computer system. Neural
computing does not remove the need for domain experts and knowledge engineers.
Instead, the knowledge acquisition process is simplified. The domain expert
is necessary to define the relevant data. The knowledge engineer is required
to determin how the data should be preprocessed and how to obtain the best
possible performance from the neural computer system.
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Neural computers may function as stand-alone expert systems, or in
conjunction with rule-based systems. Stand-alone neural computer expert
systems have difficulty explaining their behavior and are unsuitable for
problems that do not involved classification. The most promising approach
appears to be a hybrid of neural and rule-based expert systems. In a hybrid
expert system, the neural computer can act as a preprocessor to perform
pattern recognition or sensor analysis. The neural computer can also perform
as an internal component for learning, generalization, or classification.
Combining neural and rule-based approaches to expert systems may appear to be
a research project, but it has been successfully applied to manufacturing
operations.

1.6 CONCLUSIONS

Neural computing does not produce exact results in the same sense as the
very precise computations performed by traditional digital computers. Rather,
neural computing produces highly organized conceptual classifications, using
pattern matching concepts. This capability can be utilized effectively in
expert systems for knowledge acquisition and representation, through the use
of pattern-based rules. Pattern-based rules address some of the defects of
knowledge-based expert systems [reference 3]. There can be improvements in
the areas of adaptability and generalization [reference 4]. However, neural
computing is not a panacea for solving all of the problems of current expert
system architectures. A neural computer architecture must be constructed and
used with a clear understanding of the limitations and unique testing
requirements. At the current stage of the technology, there are a few things
which neural computing does better than any other technology. As the number
of engineers who understand the technology grows, their individual incremental
contribution will add up to a revolution [references 1, 51.

1.7 RECOMMENDATIONS

Neural computer technology has potential to enhance the efforts to
achieve the goals for application of Al within USAEPG.

As a result of this investigation of neural computing technology, the
following recommendations are made:

a. A collection of fundamental papers and books aimed at classroom and
educational use should be assembled for a basic bookshelf on neural computing.

b. PC-based neural computer software tools should be investigated to
support neural computer network architecture design and simulation.

c. A presentation should be prepared to demonstrate the basic concepts
and applications of neural computing. This presentation should augment this
neural computing investigation report.

d. An investigation of neural computer-based systems entering the
military environment should be initiated to identify testing needs not yet
addressed.

e. An investigation should be initiated to define testing procedures
required for systems with embedded neural computer architectures.
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f. A protojtype of an expert system, with an embedded neural computer
architecture, should be developed to demonstrate the application of "decision
making by pattern classification" and knowledge acquisition from training
examples or historical data. This prototype should be a test resource
estimator, because of the availability of historical data to train the
classification network model.
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SECTION 2. DETAILS OF INVESTIGATION

The history of neural computing dates back to the early 1950s and has
paralleled, in the shadows, the development of AI. Researchers over the last
40 years have worked to instantiate these adaptive, associative models of
biological systems as procedures for handling real-world information
processing and computation [reference 67.

Thousands of scientists, engineers, and students are studying, develop-
ing, or applying neural computing models. They cover both biological models
of brain behavior and technological models for implementation in government
and industrial applications. Many engineers have been drawn to the field
because neural computing researchers have discovered promising approaches to
problems that require adaptive, massively parallel, fault-tolerant solutions.

A neural computer is trained to model the relationship between input and
output variables. This model is then used to forecast, from a set of input
variables, the expected output from the actual system or process. One example
of this is attempting to predict the high/low temperatures and the likelihood
of rain for the next three days, based on what has happened during the past
three days. In this case, the inputs are a moving window of the temperature
and humidity over the past three days, and the output is the predicted
temperature and probability of rain, projected for the next three days.

Neural computer networks have demonstrated many capabilities, including
fault tolerance, retrieval of nearest-neighbor data in pattern matching
classification, self-organization and adaptive learning capabilities utilizing
input training sets, associative recall to perform pattern patching on partial
or degraded inputs, discovery of significant statistic features in data, and
the ability to solve problems subject to combinatorial explosion under tradi-
tional algorithmic techniques.

Neural computers will run in real time when the architectures are imple-
mented compactly in specialized hardware. The most advanced neural computer
architectures provide intelligent systems capable of autonomous learning and
skillful performance in complex and noisy environments. Such examples and
future possibilities have generated a high level of enthusiasm among people
working in the field. Much of this enthusiasm comes from the fact that many
neural computer design principles, mechanisms, and architectures were dis-
covered through analysis of the human mind and its neural mechanisms.

2.1 NEURAL COMPUTING APPLICATION

Neural comnuting research has demonstrated the affectiveness of these
specialized software or hardware systems for pattern matching of noisy,
distorted, and partial input patterns, and for associative distributed memory,
as well as large-scale multiclass discrimination. The first multiprocessor
boards, operating as coprocessors on digital mini- or microcomputers, are now
available, and some chip sets will be available in the future. As cost
declines, these non-algorithmic processing units will offer an alternative for
efficient and effective processing of noisy, incomplete, or inaccurate data.

Most of the work to date has been done in academic research institutes, but
major advances have prompted several major companies, such as AT&T, Bendix,
Texas Instruments, TRW, and General Electric, to develop in-house neural
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computer projects. Commercial products are now being offered to industry and
government, including the Department of Defense, by start-up companies such as
Hecht-Nielsen Neurocomputer, Synaptics, NeuralTech, NeuralWare, and Nestor.

Conferences, such as the IEEE First Annual Conference on Neural Networks
(June 1987) and the American Institute of Physics Conference on Neural Net-
works for Computing (April 1986), have emphasized the applied capabilities of
the technology. Projects have included adaptive filtering and signal process-
ing, conversion of printed words to spoken speech, handwriting recognition,
letter and word recognition, identification of target vehicles by radar or
sonar patterns, robotic and control applications, various vision processing
applications, financial and economic forecasting, data compression, and
decision making as pattern classification. Neural computers can self-learn
relevant patterns in data. When presented with a statistically valid
sample, these trained systems then have the capability to store large numbers
of feature vector patterns in the distributed network memory, and to perform
nearest-neighbor associative pattern matching from noisy, degraded, or partial
input patterns.

The identified characteristics of neural computing that have practical

application impact today are in three major areas:

a. Modeling and forecasting.

b. Signal processing.

c. Pattern-classification expert systems.

2.1.1 Modeling and Forecasting. In modeling a system or process, the objec-
tive is to find some defined relationship between several input attributes and
one or more resultant output conditions. Once the relationship based on a
number of sample data points has been found, it is used to interpolate between
or extrapolate beyond the sample data.

Certain types of neural computer architectures are very good at syn-
thesizing this type of relationship. Experiments have shown that a neural
network performs very nonlinear, least-mean-square regressions to develop a
continuous mapping from one multidimensional space to another. These
experiments have further shown that for a fairly complex test case, a
polynomial regression technique (Group Method Data Handling) was accurate to
±13 percent, while the neural computer was accurate to ±5 percent [reference
7].

This neural computer-based modeling and forecasting approach has been
applied to very difficult problems for servo control, sensor processing,
structural design, and computer-aided design/computer-aided manufacturing
(CAD/CAM) modeling. In the CAD/CAM field these *-chniques have been used to
perform computer-aided analysis and testing. After a mechanical or electronic
system has been designed, its probable performance can be predicted in two
ways: by actual physical testing or by computer analysis. The latter is
attractive because it is quicker, easier, and cheaper than physical testing.
After the synthesized model has been validated, it can be used to predict the
system's probable performance under a wide variety of conditions.

2-2



2.1.2 Signal Processinq. The field of adaptive signal processing grew out of
work with very early neural computer models. Neural computer networks have
evolved which perform better than other techniques for noise filtering,
matched filters, and data compression.

One example of this is a neural computer network designed to form a
Fourier transform and produce a digital feature vector which characterizes, in
a highly compressed form, the original input image. This type of network
provides two major advantages over more traditional programming techniques.
One advantage is the response time to produce a solution. The other is the
relative ease of implementation of the image recognition solution. As
different types of images are presented for analysis, the network can "learn"
to identify the unique relationships of the different patterns. Thus, when an
unknown image sample is presented, it is processed against the known patterns
to determine the degree of similarity or to define a new classification.

2.1.3 Pattern-classification Expert Systems. Expert systems are an important
element applicable to efforts in achieving the goals for the application of AI
technology to the needs of the C3 1 software and systems testing community
within USAEPG. The principal power of expert systems is the embedded
knowledge base. As the development and application of expert systems
increases, the problem of how to acquire knowledge must be addressed. The
standard process of knowledge acquisition has been performed by a knowledge
engineer, who interviews an expert, identifies the structure of the expert
knowledge, and builds rules for the expert system. This task is complicated
by the fact that the experts generally have not analyzed their thoughts, are
not explicitly aware of the structure of their knowledge, and cannot provide
an overall account of how decisions are made. Thus, knowledge acquisition has
accounted for a major part of the overall development time and expense of most
expert systems. Therefore, the problem is not only how to acquire knowledge,
but how to automate the acquisition of knowledge.

The characteristics of neural computing technology have a high potential
for practical application to the problem of expert system knowledge acquisi-
tion and representation. Through the use of pattern-based rules, some of the
defects of rule-based expert systems, such as adaptability and generalization
[reference 3] are addressed.

Many of the decisions an expert makes each day are really pattern-
classification problems. Given a set of facts, conditions, or attributes,
questions such as the following could be answered: Should this individual be
hired or promoted? Should a particular test be applied to this system? Is a
given resource needed to test this function?

These and many other questions draw upon the ability of an expert to
classify, consciously and unconsciously, a pattern of perceived facts into one
of several possible categories. When these classifications lead to action,
this is called "decision making by pattern classification" [reference 7].

The traditional expert systems usually examine a single feature or aspect
of a situation at a time, and, based on a defined set of rules, attempt to
narrow the possible outcomes step by step. Neural computer-based pattern-
classification expert systems derive an understanding of how to classify a
particular set of inputs by looking at self-organized prototype classifica-
tions. Thus, the pattern-classification expert system becomes a trained model
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of the expert, with a self-organized relationship between the input attributes

and the resultant output conditions or actions. However, this trained model

must be tested and analyzed to determine that the relationships are producing

the correct action for the right reason. Verification testing must determine
that the network has learned valid relationships.

The simplest kind of classification problem is to identify some unknown

object or phenomenon as a member of a known class of objects. These classes

are prototypes that are hierarchically organized, and the process of identi-

fication is one of matching observations of an unknown entity against features

of known classes. An example is identification of a plant or animal, using a

guidebook of features such as coloration, structure, and size.

Figure 2-1 illustfates this classification process. The expert system

classifies readers' personalities and selects books that they might like to
read. Two classification problems are solved in this example. However,

Pattern Classification

Self-Description el Boo
and Behavior Classes Classes

REFINEMENT

PATTERNS PATTERNS

Watches 0,Educated Person Boswt nelgn
No TV Stereotype Main Character

I SUBTYPE

Figure 2-1. Inference Structure of Pattern Classification
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people and book classifications are not distinct. For example, "fast plots"
is a characteristic of books, but "likes fast plots" is associated with a
person prototype. The relation between a person prototype and "fast plots"
should be distinguished from abstractions of people and books. One objective
of the system is to learn better people prototypes (user models). The classi-
fication description of the user modeling network shows that it should also be
learning better ways to classify books. The network does not need to perfect
the user model before recommending a book. Refinement of the person prototype
occurs when the reader rejects book suggestions.

If knowledge acquisition is viewed as the transfer of problem solving
capability from some knowledge source to an expert system, then a knowledge
source may be either a direct source, such as a human expert, or an indirect
source, such as data and examples of how a task is performed. Thus, knowledge
for use by an expert system may be obtained from a human expert, from data and
examples, or both.

There are three approaches to knowledge acquisition: interviewing,
learning by interaction, and learning by induction. Interviewing and learning
by interaction are very similar, simply involving different degrees of inter-
action with a knowledge engineer. However, in both cases the expert is the
principal source of the knowledge.

In learning by induction, the role of both the knowledge engineer and the
expert are diminished by a significant degree. Learning by induction focuses
on algorithms that analyze data and examples and generalizes from them to
obtain knowledge. The main problem then becomes identifying the suitable
characteristics or attributes on which induction should be performed.

Neural computing technology can provide a significant improvement in
areas of learning by induction. This improvement can be applied to reduce the
cost of knowledge acquisition, through automation of the process, and also,
because studies show very weak correlations between verbal reports and mental
behavior of humans, it has the potential to improve the quality of the result-
ing knowledge base. With an embedded neural computing element, learning by
interaction and learning by induction can be combined in a uniform framework
for knowledge acquisition. The key point is that the weaknesses of each
approach to knowledge acquisition can be compensated for by the inherent
strengths of the other.

The basic idea is to have an experL system that learns to perform a task
from examples of an expert's actions. To use this learning system for
knowledge acquisition, an expert provides a set of examples of different types
of decisions, and a data base containing the relevant features or attributes
which influence the decisions. The learning system then analyzes the example
data to identify the important constructs and criteria used in decision
making, and discovers or forms a model of the knowledge that d,-ects the
"mental behavior" of the expert system.

When the experL system is presented with a new set of input data, two
possibilities exist: either the same set of data has already been classified
by the system, or the data presents a new case that does not exactly match any
of the classifications provided by the previous examples. In the second case
the exper L system must "guess" which one of the classifications the expert
would have made in the new case. Some of the "guesses" or classification
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assignments are much better than others. Therefore, the embedded neural
computing classification could assign a "confidence factor" to each of the
possible classifications, and perhaps provide a justification or a view of how
the classification was made. The user of the expert system would make the
final classification decision, or if the system is being trained, the expert
training the system could make the final classification decision or assign a
new classification.

The adaptability of neural computer networks allows them to change
as the conditions for making a particular classification change. One example
of this is attempting to predict the likelihood of rain in various parts of
the United States, using a neural computer network trained on data collected
in Arizona during the month of May. If this system were used to predict rain
in Arizona in the month of July, or in Kansas in the month of May, the network
would likely need additional training to reflect the change of location and
time. The neural computer architecture remains the same, but the knowledge
within the network is adapted to the new conditions through training.

2.2 NEURAL COMPUTER CONCEPTS

Neural computer networks are highly distributed, non-algorithmic compu-
tation systems based on multiprocessor architectures and dense interconnection
schemes, which may be instantiated in hardware or run by software or hardware
simulators.

The basic components of neural computers are analogous to the components
of the conventional digital computer systems, which are constructed from
resistors, diodes, and transistors, combined in large numbers and in a variety
of ways. Thus, combining idrge numbers of the basic components of neural
computing in a variety of ways leads to large neural computing systems with
many interesting and practical properties.

2.2.1 Basic Components of Neural Computers. The basic components of the
neural computer are the processing element (PE) and the interconnect or
connection, as shown in figure 2-2. The connection has an associated
connection strength. Input signals enter the PE through a connection which
regulates the signal via the connection strength [reference 5].

The PE performs two basic operations, the summation function and the
transfer function. Signals that enter the PE through the weighted connections
are summed by a summation function, as shown in figure 2-3. This summation is
then transformed by the PE transfer function, which creates the net output
that is a function of the weighted sum of all the input signals. An output
signal from the PE is created (PE is activated), if conditions (activation
level) within the transfer function are met. If the activation level is not
met, an output from the PE is not produced (PE is not activated). Transfer
functions m~v be either linear, non-linear, or step functions [reference 7].

Each neuron-like PE has a small amount of local memory and can perform
its entire computation function based only on local data passed to it via
interconnects with other PEs. Transfer functions, which are modified discrete
integral products of weighted sums, define the computation performed in each
PE.
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Connections

Input 1

Input 2Sk

In put 3 IU M-a--e

Input n

Processing Element
Figure 2-2. Basic Components of Neural Computers: PE and Connection

S urm mat ion Transfer
Function Function

Inputs

Figure 2-3. Processing Element Model

Figure 2-4 shows a mathematical representation of a PE and its
connections. This representation describes the "neurodynamics" of a PE. A
sigmoid transfer function is shown in the representation. There are many
variations on these basic components.
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2.2.2 Neural Computer Networks. When a number of PEs are connected together
into an array which allows them to communicate, the result is a neural net-
work. Within a neural network, PEs are grouped together to form layers, which
simplifies the description of the network operations. Thus, one or more PEs
grouped together, with the same neurodynamics, is a layer [reference 5]. A
subgroup of a layer which contains a logical group of PEs is termed a slice.

Figure 2-5 shows a neural computer network consisting of three layers.
Data is applied to the input layer. Connections transfer information from the
input layer to the hidden layer, and from the hidden layer to the output
layer. The middle layer is called a hidden layer because its inputs and
outputs are not available outside the network.

Each PE has a single output. Input to one PE from another PE has a
weight or adaptive coefficient which acts as either an inhibitory or an
excitatory influence on the input. Interconnection schemes vary from fully
connected networks, where every PE is connected to every other PE, to layers
where the output of each PE on one layer fans out as input to each PE on the
next layer. In figure 2-5, all of the connections are from a previous layer
to the next layer, which forms a feed-forward network.

Nonlinearity may be introduced to the network by allowing PEs to feed
back the outputs of a layer, or group of layers, to their inputs. This is
called a feedback or resonant network. Nonlinearity is a key feature that
differentiates the neural computer from other, more traditional, algorithmic
processing techniques such as polynomial curve fitting or factor analysis.

Within a layer the PEs may be required to "compete" to provide the single
or a partial output of the layer. When competition is introduced, the model
of the PE is extended as shown in figure 2-6.

2.2.3 Learning and Adaptation. Neural computer networks are used to develop
a relationship between the network inputs and outputs. In a conventional
digital computer system, this relationship is provided by the software algo-
rithmic program, developed from a functional specification. ExperL systems
use concepts or logic, described in a knowledge base, to develop an "inferred"
relationship.

Neural computer networks are not given information about how to process
the input data to produce the desired output. The network performs this
function through the use of a "learning rule", which adjusts the connection
weights in the PEs in such a way that the desired output is achieved. This
ability to determine the processing function is called self-organization, and
is also referred to as learning or adaptation.

Figure 2-7 shows the general learning process [reference 7]. The network
starts with the connection weights in the PEs set to random values. Pairs of
inputs and outputs are applied to the network. These pairs of data are called
the training set or historical training data. Based on the input and the
expected output pair, the network learns by adjusting the connection strengths
between PEs. The method of performing the adjustment or adaptation is called
the learning rule. Depending on the learning rule, a network may require
several thousand presentations of the training data before it converges to the
required configuration.
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Training a Neural Network

"Random" Historical
Network Training Data

Learning Procedure

Trained Network

Figure 2-7. Neural Networks Learn from Historical Training Data

When only the input data is presented and the network must organize the
data into related groups or classifications, the learning process is called
auto-association or unsupervised or self-supervised learning.

2.2.4 Network Architecture. The organization of the network is called the
network architecture. The network architecture is designed to perform a
general classification task. The learning process occurs in the context of
the network architecture. This architecture is constructed based on four
components:

1. The number of PEs.

2. The configuration of the connections and layers.

3. The neurodynamics of the PEs.

4. The network or layer learning rules.

The number of PEs and the configuration of the connections and layers deter-
mine what degree of detail the network can organize and process.

Neurodynamics and connection strategies affect the way in which a network
processes data. Connections can transfer information in a single direction in
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a feedforward network, or in both directions when feedback is provided, to
produce nonlinear operation during learning and recall. These factors deter-
mine the operating network dynamics.

Several neural computer network architectures have been defined and are
considered to be "standard" architectures. Connection strategies, transfer
functions, learning rules, and other variables follow guidelines developed
through neural computer engineering and research. As neural computing appli-
cations are developed, the standard architectures are modified and combined
with other architectures to achieve the desired effect and accomplish the
goals of the application.

2.2.5 Data Preprocessing and Representation. The representation and prepro-
cessing of the input data, either by conventional methods or by neural comput-
ing methods, is a key element in the development of a neural computing appli-
cation architecture. As with any application, the proper formulation of the
problem, the representation of the knowledge or data, and the presentation to
the system for solution will affect the process or strategy taken to solve the
problem.

Some of the representation issues that must be considered are as follows:

a. It is important that all of the pertinent factors are represented in
the data that is presented for input.

b. It is sometimes useful to preprocess the raw input data by integrat-
ing parameters in a way that separates pertinent factors.

c. Research seems to indicate that the best representational division
of data is the one that the problem domain expert would use. Thus, if the
domain expert usually forms the ratio of two numbers in the solution process,
that ratio should be used as the representation of the data presented to the
input for a neural computing solution.

Most architectures require that input data be preprocessed for nor-
malization. There is also a need for scal ig the data prior to normalizatiun.
Scaling spreads the data so that one factor does not dominate another.
Scaling also centers the data, which is necessary for normalization. Scaling
and centralizing data usually involves forming one or more statistical parame-
ters for the input training set.

2.3 STANDARD ARCHITECTURES

With the great variety of possible neural computer architectures, a
review of even the major ones would be beyond the scope of this report. A
brief description of the interesting properties of two neural computer archi-
tectures will illustrate some of the basic design characteristics.

2.3.1 Perceptron Architecture. The perceptron neural computer architecture
was designed by Frank Rosenblatt [reference 6' to model the pattern
recognition capabilities of the human visual system. The architecture is
relatively simple and illustrates several of the basic ideas related to PEs.
It is a feed-forward network, without feedback or cross talk between PEs.
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The network consists of three layers. The input layer is a fan-out
buffer that presents each input value to each PE in the next layer. The
second layer contains a set of hard-wired feature detectors to detect specific
features from the input pattern. The output layer contains perceptrons or
adalines (adaptive linear neurons), which act as feature recognizers. The
weights on the connections to the input and detector layers are all fixed,
while the connection weights on the output layer are set by the learning
procedure to train the PE to recognize and identify a set of patterns. Figure
2-8 shows a perceptron network [reference 5].

Each perceptron layer PE has one input tied to a constant value of plus
one tnrough an adjustable weight. The other inputs are connected through
adjustable weights to the output of the PEs in the feature detector layer.
The output transfer function is zero if the weighted sum of the inputs is less
than or equal to zero. Otherwise, the output is equal to the weighted sum of
the inputs, or alternatively, the transfer function can be configured to
provide an output value of one. In the latter case, the PE is termed a binary
or threshold logic unit.

The basic learning rules for training the perceptron weights are as

follows:

1. If the output value is correct, then do not change the weights.

2. If the output is zero and should be greater than zero, then
increment the weights on the "active" input connections.

3. If the output is greater than zero and should be equal to zero,
then decrement the weights on the "active" input connections.

An input connection is "active" if it is greater than zero.

A perceptron system is guaranteed to find a set of connection weights
that correctly classifies the input vectors, if such a set of weights exists.
Since the perceptron learning procedure can be applied independently to each
of the output units, it will find the mapping from the input vector space onto
a classified set of output vectors, if such a mapping classification exists.
The problem is that unless the classes can be separated by a line or a plane,
with all of the first classification on one side and all of the second classi-
fication on the other side, the mapping does not exist. All functions or
vector spaces for which such a plane exists are called linearly separable.
Thus, a perceptron can linearly separate a set of inputs, but it cannot do
more [reference 5].

There are a number of problems which can be solved with units of this
type. However, most real problems cannot be solved without s4-nificant
problem-dependent preprocessing to form a linearly separable data set. The
perceptron, therefore, is interesting as a device for obtaining an understand-
ing of concepts, but it is not generally useful for applications.

Providing solutions to the linear separability and other problems of the
perceptron are some of the recent major advances in neural computing.
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2.3.2 The BPN and CPN Architectures. The "backpropagation" (BPN) and
"counterpropagation" (CPN) network architectures are representative of
configurations that can be effectively applied to the development of a large
range of applications. Both are mapping functions, which map n-dimensional
input vectors to m-dimensional output vectors. BPN, developed by Rumelhart
[reference 8], is one of the more widely known neural computing architectures,
due to its extensive use by members of the Parallel Distributed Processing or
"PDP" group [reference 8]. BPN is a generalized gradient descent algorithm,
which adaptively adjusts its connection weights during training to minimize
the mean squared error between the actual and the desired output. Once the
output of a computation reaches the final output layer, the error values are
sequentially propagated to the previous network layers.

The CPN architecture was developed by Hecht-Nielson, based on work by
Kohonen [reference 9]. The CPN trains itself to be an optimal, equiprobable
lookup table. In its complete form, CPN performs in both a forward and a
backward mode.

Both architectures require a period of "training" before test datais
submitted for classification. A statistically significant set of training
data must be obtained. The training set consists of (X,Y) pairs, where each X
is the input feature vector and the corresponding Y is the desired output
vector for the mapping. The training set is repeatedly submitted to the
network until it converges or is fully trained. Once the network has been
trained, the adaptive learning function is turned off and feature vectors are
presented for testing. The network produces an X-to-Y mapping based on its
"learned" structure.

The internal structure, or "memory", is based on a set of weights associ-
ated with each PE (see figure 2-4). The PE has several inputs, each with an
associated weight and a single output. The transfer function for the PE
varies according to the layer, and is based on a discreet integral of the
product of each X and its associated weight. During the training phase, a
learning function describes the adjustment of the PE weights for each layer
and network type.

BPN encodes its memory as a set of internally determined features on the
hidden layer of the network. The set of weights across all PEs on this layer
represents a distributed memory. After adaptive adjustment, or training of
the weight according to the least mean criteria, an input feature pattern
stimulates a distributed pattern of activity in the hidden layer, which is
interpreted by the output layer as a particular class of pattern.

The hidden layer of the CPN acts as a set of matched filters, which
generalize the input patterns during training. During testing, the resultant
mapping function finds the nearest match, from among *he generalized PE
exemplars, to the input pattern. CPN is attractive because the hidden layer
PEs can be viewed as a generalized statistical distribution of the features.
This property could be used to statistically track drift in the input pat-
terns.
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2.4 THE NEURAL COMPUTER WORKSTATION

The software or hardware instantiated neural computer workstations which
are currently available consist of a personal computer (PC) host with a color
monitor, either a hardware-based coprocessor neural-computer-network simulator
or a software-based neural-computer-network simulator, a user interface
library, and a set of prepackaged network elements, including summation
functions, transfer functions, output functions, and learning rules.

Neural computing application programs are written in a high-level lan-
guage such as C on the host computer. The application program is responsible
for preprocessing the input data patterns, initiating calls to the
hardware/software network simulator via an interface-procedure library, and
obtaining the network results from the simulator for final analysis and
output.

A typical coprocessor network simulator board is capable of implementing
up to 30,000 PEs and 480,000 PE interconnections. Interconnections are
updated at a rate of 25,000 per second during learning and 45,000 in the
recall mode. The cost for this hardware is $7,000 to $15,000.

A typical software network simulator is capable of implementing up to
4,000 PEs, and 15,000 PE interconnections with 640 KB of memory or up to
425,000 interconnections with 8 MB of extended memory. The interconnections
are updated at a rate of 8,000 per second without an 80287 math coprocessor,
and 32,000 per second with the math coprocessor on a 10-MHz PC. The cost for
this software is $500 to $1,000.

Both the hardware and software neural computing simulator systems use
disk files to store the network configuration such as network constants, which
define the specifications (number of PEs, layers, input/output elements,
etc.), the weights for all PEs in the network, and the output state informa-
tion for all the network layers. These files completely characterize the
current state of a network configuration.

A neural computer network simulator has successfully discriminated
between sonar returns of an undersea rock and a cylinder. The network
consisted of less than 100 PEs, with approximately 2,000 interconnections.
This network accurately distinguished between rocks and cylinders 90 percent
of the time, which compares favorably with the performance of human operators
[reference 1]. Therefore, these hardware/software neural computer network
simulators are capable of performing the types of practical applications
outlined in this report.

2.5 CANDIDATE PROTOTYPE APPLICATIONS

Application areas and specific application projects have been identified
through discussions with USAEPG testers, test officers, and managers. The
development of these prototypes will provide some of the tools described in
the development of the test planner and test player prototypes outlined in
reference 2.

The potential applications of neural computing technology listed in table
2-I are primarily as embedded modules in expert systems for "decision making
by pattern classification" and as knowledge acquisition from training examples
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or historical data. Neural computing technology can also have application to
modality propagation [reference 2] as an aid in the application of statistical
methods in conjunction with modal systems that are embodied in many expert
system inference engines. A good problem for application of neural computing
methods has the characteristic of overlapping classifications such that one of
two or more categories is probabilistic. The strength of the classification
assignments can be used to deduce a numeric measure of belief, certainty,
likelihood, etc., of a classification assignment.

2.5.1 Preprocessiij Statistical Data. Much of the data produced during C31
system testing requires statistical processing and analysis to derive meaning-
ful performance information. The suitability of the collected data for
analysis is determined, to some extent, by the statistical design of the test,
which makes explicit the assumptions and constrains the type and volume of
data to be collected, to assure that the desired analysis can be performed.

In the course of a given test, many situations arise which can lead to
variation in both the plan and its execution. In such situations it may be
difficult or impossible to determine whether the gathered data meets the
original statistical requirements, or whether some alteration in the statis-
tical design is necessary.

Many statistical tests embody generic assumptions regarding the dis-
tribution from which the original data are drawn, and in application may
embody further assumptions about the consistency, temporal continuity and
regularity, and range of the specific test data. Ideally, the software used
to perform the data reduction, tests for these assumptions and adjusts or
suspends process ing based on the fit of the test data to the design
assumptions. Even more useful would be a real-time approach which would
monitor and allow adjustment of test procedures to expand, contract, or modify
the data collection process to meet the statistical requirements.

The global assumption implicit in many tests regards the distribution
from which the test data are derived. Some tests perform reasonably well when
the statistical distribution assumptions are not met, while others can yield
seriously misleading results. At present, the fit of data to some
distribution is performed using standard algorithms by a number of software
packages. The potential for performance enhancement to real-time levels may
exist through use of neural computer techniques to create a distribution
recognition system which could function at data collection speeds. The
initial project would be to train a neural computer network to recognize:

a. A static fit of a data set to a distribution.

b. A dynamic fit of an incrementally growing data set to a specified
sample size and distribution requirement.

2.5.2 Subtest Selection. C31 system tests consist of 15 to over 100
subtests. Forty to 60 percent of the tests are system unique. The remainder
are applications of a standard test criterion and methodology to a specific
system. The unique tests are often identifiable in generic terms, but differ
in detail to a degree which precludes standardization of the actual test
procedure.
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Selection of subtests for a system involves consideration of numerous
factors and constraints. If the more obvious resource constraint problems are
ignored, the remaining factors may be characterized as follows:

a. Category of test, i.e., developmental or operational, phase I, II or
III;

b. Type of test, e.g., advanced development production qualification,
engineering design, etc.

c. System application area, e.g., artillery, infantry, garrison or
battlefield, air- or land-deployed, etc.

d. System characterization, e.g., electronic, mechanical, optical,
aircraft ancillary, avionics, munitions, weapon system, radio, radar, active
or passive, etc.

Some factors overlap, i.e., the factors are intermixed, and the system
characterization may also include technologically unique components.

The selection of subtests is an activity calling on expertise from many
areas in USAEPG, and involves considerable time and effort. The current
problem is that any simplistic, rule-based approach must ignore many of the
factors, while a more extensive approach would require extensive knowledge
engineering for both development and maintenance. The resultant system would
produce only a "straw man" selection for further refinement, in light of
proponent and test agency resource constraints.

The proposed neural computer prototype in this domain would involve
training a system to produce a selection of at least the standard subtests
based on historical data regarding the system encoded in the United States
Army Test and Evaluation Command and the Research, Development, Test, and
Evaluation project numbers, the type and category of test from the test report
cover sheet, and the actual tests selected from the test report table of
contents.

The underlying hypothesis is that there is a gestalt, perhaps deeply
buried, in the current mechanics of subtest selection, which a neural comput-
ing network could elicit from training examples of historical data on subtest
selection.

2.5.3 Global Test Resource Estimation. As indicated in the subtest selection
application, test selection is a complex process. Estimation of resources at
a global level (i.e., total test time and number of test items) depends, at
present, on the results of the subtest selection process.

The hypothesis is th' + there is a gestalt which might be elicited by
examining the results of previous expert activity in the domain. Although the
characterization data, available from the cover page and table of contents,
will remain the same, the test report will need to be examined in greater
detail to determine the total time and test item resources actually employed
during the system test. The likelihood of useful gestalts emerging from
training this prototype is somewhat greater than in the subtest selection
case, since only the total test time and number of test items are desired,
rather than a pattern of selection from among 50 to 100 standard subtests.
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However, it may be more difficult to perform the analysis and extraction of
historical resource data from the existing system test reports.

This prototype is designed to identify, based on preliminary system
characterization, the test time and test item resources required for the
global system classification. An additional function could identify potential
impacts of deletion or addition of selected tests or subtests.
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APPENDIX B. ACRONYMS AND ABBREVIATIONS

The following is a list of terminology used in this report, with the
acronym/abbreviation associated with each term.

AI ..................... Artifical intelligence

BPN .................... Backpropagation

CAD/CAM ................ Computer-aided design/computer-aided
manufacturing

C31 .................... Command, Control, Communications, and Intelligence

CPN .................... Counterpropagation

ECR .................... Embedded computer resources

KB ..................... Kilobyte

MB ..................... Megabyte

PC ..................... Personal computer

PDP .................... Parallel Distributed Processing

PE ..................... Processing element

TECOM .................. United States Army Test and Evaluation Command

USAEPG ................. United States Army Electronic Proving Ground
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APPENDIX C. GLOSSARY

The following terms are identified and defined as they are used
throughout this methodology report.

Activation Level

The minimum value required by the PE transfer function to produce an
output from the PE.

Adaptability

The ability of neural computing systems to self-adjust. This ability is
used for learning.

Adaptive Coefficient

The weighting value associated with each input to a PE. It weights the
effect of that input on the PE's output. Adaptive coefficients can be
self-adjusting; e.g., their values can be self-modified in response to
external input. The process of self-adjusting is called learning.

Associative or Content-addressable Memory

Memory which allows retrieval of information by presentation of inexact
or incomplete stored memory keys. It searches data on the basis of their
contents rather than their location, and thus can be addressed using only a
partial pattern or memory. When a neural network is stimulated with some
fragment of a pattern in its associative memory, the network will respond with
the entire memory or pattern.

Auto-association or Unsupervised Training

A means of training adaptive neural networks which requires unlabeled
training data and no external teacher. Data is presented to the network and
internal categories or clusters are formed which compress the amount of input
data that must be processed at higher levels without losing important
information.

Auto-associative Memory

Memory which is designed to transform an input pattern itself. If the
input pattern is noisy, degraded, or incomplete, the memory will still recall
the undegraded pattern.

Backpropagation (BPN)

A learning algorithm for updating weights in a multilayer, feed-forward
neural network that minimizes the mean squared mapping error.

Bias

A constant input value applied to PEs to establish a reference level of
operation.
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Competition or Competitive Learning

A learning algorithm in which groups of PEs in a neural network compete
to respond to an input pattern. The winner within each group is the one whose
connections make it respond most strongly or actively to the pattern. The
winner then adjusts its connections slightly toward the pattern that it has
won.

Convergence

The process in which, after a finite number of presentations to the
neural network input of a given set of training patterns, the values of the
connection weights approach the set of values representing whatever
computation or classification is contained in the input patterns.

Counterpropagation (CPN)

A type of neural network learning algorithm which does not require
explicit tutoring of input-output correlations and spontaneously, through
auto-association, self-organizes upon presentation of input information
patterns. It is used in optimization and pattern classification problems.

Cross Talk

The overlap of input patterns in a neural network. This can result when
. network does not have enough processing elements to allow one element to be
reserved exclusively for every possible input pattern.

Distributed Memory

The independent memory of each PE in a neural network. This allows each
processor to work on a small portion of the overall computational problem,
thus distributing the load. Each entity or concept is represented by a
pattern of activity distributed over many PEs, and each PE is involved in
representing many different concepts.

Fan-out

The number of PEs directly excited by a given unit.

Feedback

A characteristic of a multilayer neural network with recursive
connections that iterate over many cycles to produce an output. Contrast with
"feed-forward".

Feed-forward

A characteristic of a multilayer neural network with connections
exclusively from lower layers. In contrast to a feedback network, a
feed-forward network operates only until its inputs propagate to its output
layer. A multilayer perceptron architecture is a feed-forward neural network.
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Full Connectivity

The condition in which each PE in a layer of a neural network is
connected to each PE in another layer of the network.

Generalization

The ability of a neural computing system to generalize from the
input/output training examples to produce a sensible output from a previously
unseen input.

Gradient Descent Algorithm

A stochastic computational technique derived from statistical mechanics
for finding near globally minimum-cost solutions to large optimization
problems.

Hidden Units or Layers

Those PEs in multilayer network architectures which are neither the input
layer nor the output layer, but are located between these and allow the
network to undertake more complex problem solving, with nonlinear properties,
than networks with no hidden units.

Input Pattern

A collection of input data items that are sent to the neural computer to
act as the external stimulus to the network.

Interconnects or Connections

The unidirectional links or information channels between a neural
network's PEs.

Knowledge Base

An unstructured set of facts and a set of inference rules for determining
new facts.

Layer

A collection of PEs that use the same transfer and learning functions.
Although the weights of individual PEs within a layer may vary, all have the
same transfer function.

Learning

The process of adjusting the PE weights in response to external inputs.

Learning Rule, Function, or Algorithm

A first-order, ordinary differential, or difference equation governing
the output state of a PE. The equation specifies how the adaptive
coefficients or weights are self-modified in response to input signals and
values supplied by the neural network's transfer function. This allows a PE's
responses to input signals to change over time.
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Least-mean-square Algorithm

A function which minimizes the mean squared error between the desired
output of a neural network and the actual output.

Machine Learning

A research effort that seeks to create computer systems which can learn
from experience.

Modality

A qualitative or quantitative weighting associated with a fact, element
or knowledge, or conclusion. Examples from current expert systems include
probability, certainty, utility, belief, desirability, and reliability.

Modal System

The set of techniques used by the inference engine to establish,
propagate, and combine symbols or numbers representing modality values.

Network Architecture

The organization of a neural network, which encompasses the number of
PEs, their neurodynamics, the configuration of their connections and layers,
and the network or layer learning rules.

Neurodynamics

A mathematical representation of a PE and its connection which describes
the operation of the PE.

Neural Computer

A hardware or software implementation of a neural network on a standard
digital computer which allows software on the host computer to call neural
network procedures. Neural computers allow neural networks to be integrated
into almost any computer environment where their unique processing
capabilities are needed.

Neural Network

A cognitive information processing structure based on models of brain
functions. In an engineering context, a highly parallel dynamic system with
the topology of a directed graph that can carry out information processing by
its response to input data.

Parallel Processing

A computer system in which a program is executed concurrently on more
than one processor, as opposed to serially on a single processor.

Pattern Recognition

A technique that classifies data into predetermined categories, using
statistical methods, template comparisons, or learning algorithms.
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Perceptron or Adaline (Adaptive Linear Neuron)

A member of a family of trainable pattern classifiers which distinguishes
between patterns on the basis of linear discriminate functions.

Processing Element (PE)

The fundamental computational element in a neural network, which emulates
the operation of neurons in living organisms. PEs are connected to each other
via information channels called interconnects.

Resonant Network

A nonlinear neural network which permits a state of oscillation or
feedback between the fields or layers in an associative memory.

Self-organization

The autonomous modification of the dynamics of a complete neural network,
via learning in some or all of its PEs, to achieve a specified end capability
or result.

Slice

A subgroup of a layer which contains a distinct logical collection of
PEs.

Stochastic

A process involving a randomly determined sequence of observations. It
implies randomness as opposed to a fixed rule or relation in passing from one
observation to the next in order.

Training

The exposure of a neural network to a specified data set or information
source environment, for the purpose of achieving a specified self-organization
goal.

Training Set or Historical Training Data

The collection of data used in "training" a neural network to perform the

desired pattern classification.

Transfer Function

The equation that defines how the output signal of a PE evolves in time
as a function of its weighted input signals.

Vector

A quantity represented by an ordered set of numbers.
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Weight

An adaptive coefficient that can be self-adjusted in response to each
external input to a PE.
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